Skip to main content

IoT - DC Motor Controlling Using Amazon Echo

In this tutorial, we will learn how to interface DC Motor with NodeMcu by using Relay Module controlling with Alexa echo. with voice API.

A DC motor is any of a class of rotary electrical machines that converts direct current electrical energy into mechanical energy. The most common types rely on the forces produced by magnetic fields. SmallDC motors are used in tools, toys, and appliances.

DC Motor (Overview) 
There are 4 main types of DC motors:

Permanent Magnet DC Motors. The permanent magnet motor uses a permanent magnet to create field flux.

Series DC Motors. In a series DC motor, the field is wound with a few turns of a large wire carrying the full armature current.

  • Shunt DC Motors.
  • Compound DC Motors.

So now we are familiar with the motor let us interface it.
Components Required:
  • DC motor
  • NodeMcu(ESP8266)
  • Alexa echo.
  • Connecting wires(male to male)
  • Breadboard
  • Relay Module

Follow the Image below for circuit connection reference:-
(Interfacing all components)
N.B-(In this circuit connection we have to supply 5volts as the input voltage.)

After making the circuit dump the code given below:-
#include <ESP8266WiFi.h>
#include "fauxmoESP.h"
/* Network credentials */
#define WIFI_SSID "Enter your Wifi Name"
#define WIFI_PASS "Enter Password"
/* Belkin WeMo emulation */
fauxmoESP fauxmo;
/* Set Relay Pins */
#define RELAY_1 D0
void setup()
{
Serial.begin(115200);
//setup and wifi connection
wifiSetup();
//Set relay pins to outputs
pinMode(RELAY_1, OUTPUT);
//Set each relay pin to HIGH ====== NOTE THAT THE RELAYS USE INVERSE LOGIC =====
digitalWrite(RELAY_1, LOW);
delay(500);
// Device Names for Simulated Wemo switches
fauxmo.addDevice("Karkhana Motor");
fauxmo.onMessage(callback);
}

void loop()
{
fauxmo.handle();
}

/* ---------------------------------------------------------------------------
Device Callback
----------------------------------------------------------------------------*/
void callback(uint8_t device_id, const char * device_name, bool state)
{
Serial.print("Device "); Serial.print(device_name);
Serial.print(" state: ");
if (state)
{
Serial.println("ON");
}
else
{
Serial.println("OFF");
}
//Switching action on detection of device name
if ( (strcmp(device_name, "Karkhana Motor") == 0) )
{
if (!state)
{
digitalWrite(RELAY_1, LOW);
}
else
{
digitalWrite(RELAY_1, HIGH);
}
}
}
/* -----------------------------------------------------------------------------
Wifi Setup
-----------------------------------------------------------------------------*/
void wifiSetup()
{
// Set WIFI module to STA mode
WiFi.mode(WIFI_STA);
// Connect
Serial.println ();
Serial.printf("[WIFI] Connecting to %s ", WIFI_SSID);
Serial.println();
WiFi.begin(WIFI_SSID, WIFI_PASS);
// Wait
while (WiFi.status() != WL_CONNECTED)
{
Serial.print(".");
delay(100);
}
Serial.print(" ==> CONNECTED!" );
Serial.println();
// Connected!
Serial.printf("[WIFI] STATION Mode, SSID: %s, IP address: %s\n", WiFi.SSID().c_str(), WiFi.localIP().toString().c_str());
Serial.println();
}

After dumping the code the output is shown on the video below:-



After dumping the code the out put is shown on the image below:-

(During circuit is running)

Thinking?
Join our hands-on training courses.
To know more visit us at Karkhana Training Portal

Comments

Popular posts from this blog

IoT - LPG Gas Sensor Logging with NodeMCU and Thingspeak.

In this tutorial, will learn, how to interface MQ-5 Module with Node Mcu(ESP8266).

The Grove - Gas Sensor(MQ5) module is useful for gas leakage detection (in home and industry). It is suitable for detecting H2, LPG, CH4, CO, Alcohol. Due to its high sensitivity and fast response time, measurements can be taken as soon as possible. The sensitivity of the sensor can be adjusted by using the potentiometer.


Components Required
NodeMcu(ESP8266) MQ-5 LPG SENSOR Module Few male to female connecting wires Breadboard  Follow the image below for circuit connection reference:-
After making the circuit dump the code given below:-

// Karkhana Report
// Analyse the volume of the gas using thingspeak.com
// Hardware: NodeMCU,MQ-5

#include <ESP8266WiFi.h>
String apiKey = "Enter the API key"; // Enter your Write API key from ThingSpeak
const char *ssid = "Enter ssid"; // replace with your wifi ssid and wpa2 key
const char *pass = "Enter password";
const char* server = &qu…

IoT - Humidity and Temperature Logging using NodeMCU and ThingSpeak

Hey Folks,
In this tutorial, we will learn, how to interface DHT 11 with Node Mcu(ESP8266).
The DHT11 is a basic, ultra low-cost digital temperature and humidity sensor. It uses a capacitive humidity sensor and a thermistor to measure the surrounding air and spits out a digital signal on the data pin (no analog input pins needed).




Components Required
NodeMcu(ESP8266) DHT 11 SENSOR Few male to female connecting wires Breadboard
Follow the image below for circuit connection reference.
In this circuit, we have connected the output pin to the D3 pin of the NodeMcu module and NC pin remain disconnected. After making the circuit dump the code given below.
// Karkhana Report
// temperature and humidity data using thingspeak.com
// Hardware: NodeMCU,DHT11
#include <DHT.h> // Including library for dht
#include <ESP8266WiFi.h>
String apiKey = "THINGSPEAK API KEY"; // Enter your Write API key from ThingSpeak
const char *ssid = "ENTER YOUR SSID"; // replace with your wifi ssid a…

Servo Motor Control using ESP8266 and Blynk App

Hey folks, 
In this tutorial we will learn how to interface Servo motor with NodeMcu(ESP8266)module and operate it with the Blynk app. Servos are controlled by sending an electrical pulse of variable width, or pulse width modulation (PWM), through the control wire. There is a minimum pulse, a maximum pulse, and a repetition rate. A servo motor can usually only turn 90° in either direction for a total of 180° movement.
   Follow the image below for circuit connection reference. In this circuit, we have connected the output pin to the D0 pin of the NodeMcu module. If want to control the servo motor manually then connect a 10K potetiometer . The 10K potentiometer will work as a voltage divisor, changing the analog input level on  NodeMCU (A0) from 0 to 3.3V. Internally, the 10 bits ADC (Analog-Digital converter) will generate a digital value (from 0 to 1023), the PotReading, equivalent to the analog voltage input.
After making the circuit dump the code given below.
/*NodeMCU */
#include <ESP…